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A SIMPLE MODEL OF THE INTERPLANETARY MAGNETIC FIELD I:

CALCULATION OF THE MAGNETIC FIELD

David Stern
Theoretical Division
Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT 4
s g

A sinmple axisymmetric model of the interplanetary magnetic field
is described and solved analytically. 1In this model, space is divided

into three regions by two concentric spheres, conductivities are

" assumed to be isotropic and constant in each region and flow velocities

are prescribed a priori. The innermost region rotates rigidly around
the axis of a dipole embedded in its center, the intermediate region

contains a compressible fluid (an idealization of the solar wind)

.flowing radially outward with constant velocity and finally, the outer-

most region is at rest. Special attention is given to the limiting
case of infinite conductivity, to the "garden-hose effect", to the
electric field and to the effects of a constant field, aligned with

the central dipole, in the outermost region.




INTRODUCTION

Experimental evidence available now indicates the existence of
an interplanetary field, originating in the sun and extending at
least to the earth's orbit, possibly much further. There are still
many uncertein points concerning this field, but two of its main
general properties have been predicted theoretically and seem to be,
so far, in agreement with experiment. Both may be regarded as mani-
festations of the fact that a highly conducting fluid-~here, the
solar wind emenating radially from the sun--tends to impart its motion
to magnetic lines of force embedded in it. First, it was predicted
that the solar wind will stretch the lines of force, rendering them
almost radial and causing the field intensity B to fall off less
repidly then it would otherwise (e.g. [Alfven, 1956]1). Secondly, in
addition to radial stretching, the field was expected to be twisted
‘by solar fotation into an archimedean spiral. This point was noted
Pirst by Chapman (1928) who observed that the locus of a particle
stream constantly emitted from a point on the sun is, at any time,
such a spiral (the same locus is described by-droplets emitted from
a rotating sprinkler,ifor which reason the above 1s sometimes called
the "garden-hose effect"). A line of force drawn out by a stream of

particles would also follow such a spiral, and it was argued that a

though the arguments presented for this (Pa:ker, 1958; Axford, Dessler

and Gottlieb, 1963) were somewhat unsatisfactory. The effect has also
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been deduced from experimental data, from the cosmic ray flare effect
(McCracken, 1962 ) ~Pieneer—¥data—{Greenstadts—3%3) and Mariner IT
data (Davis, 1953); the "éarden-hose angle" X between B and the radial
direction from the sun in all those cases was of the order of 450.

In this work, a simple model of the interplanetary field will be
investigated, first in the limiting case of a perfectly conducting
fluid and then for the case of finite, homogeneous and isotropic
conductivity. The model is as follows:

Let space be divided into three regions by two»concentric spheres
of radii R, and R, (fig. 1). Region I, the innermost, is assumed to
rotéte rigidly with angular veloccity w. This region also contains
the source of magnetic field, which will be assumed to be a point dipole
at the origin, with dipole momeptAQ parallel to the axis of rotation.
Region II, between the spheres, contains a compressible conducting
fluid flowing out radially with constant velocity u. Finally, in region
IIT which extends to infinity, no motion takes place. Region I here
represents the sun, region II the space swept by the solar wind. The
equation connecting the magnetic field B, the electric field E, the
velocity v and the conductivity o is

el B = v (£ + [gx0]) ‘ (1)
and we shall be interested in stationary solutions with rotational
symmetry around m, with particular interest in the case when ¢ is large
It should be borne in mind all along that the preceding is a gross

oversimplification of the actual situation. First of all, it is not
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even certain whether the solar dipole field plays a major role in
creating the interplenetary field. Certainly, intense local fields
due- to active areas influence it considerably and ceuse it to depart
from rotationel symmetry. Next, the solar wind is not an.ordina:y
conducting fluid but rather a near-collisionless plasma, the conduc~-
tivity of which is highly anisotropic; its flow may also very well
prove to be turbulent. Furthermore, the imposed boundary conditions
assume sharp discontinuities where gradual transitions probably occur.
Finally, in any problem of this sort, the velocity v is generally not
determined & priori fut has to be solved simultaneously with B, using
the hydromagnetic flow equation (e.g. [Chandrasekar, 1956]). In the
vicinity of the earth, of course, the mass flow dictates the magnetic
field because of its much higher energy density; nevertheless, in the
viciﬁity of what corresponds to the ocuter sphere in this model, the
flow will be considerably distorted by the field.

Unfortunately, a more realistic model would be very hard to solve
analytically. It is hoped, however, that the results obtained here
will give some gqualitative insight about the behavior of the actual

interplanetary field.

THE LIMITING CASE

If o tends to infinity while B stays finite, we generally get

E - -[yxe]
Since B is rotationally symmetric and stationary, ag/at vanishes and

one has, in the limit of infinite ©

eurl [ux ol = o




in region IT
Lvxz]l = ( L3 -ie )
The ¢ component of the curl gives
By = 3®/v
vhere ((6) is an arbitrary function. The other two components give
B = A/ (fsime)
This solution, however, is singular on the symmetry axis unless A = O.

Therefore

The condition div B = O determines the form of the third component
as T, = B/
with §(6) another arbitrary function.
On‘the surface r = Ro’ Ey is continuous. Just inside the boundary,
E, = -A&,Br and since Br is continuous too, we may use its value out-
side the boundary to give
| £, (R =~ (®/R,) swe (S
The continuity of Eg now gives
g(\g.)' = = (W) swmy &)
giving as the tangent of the "garden-hose angle"
tz X = B /B, = - (W/u) TS
Several points in the gbove results deserve notice. First, in a
source~-free region, the vafious components of the magnetic field fall
off at different rates with distance, the higher multipoles decreasing

faster. For instance, the earth's magnetic field (neglecting effects

(2a)

(2v)

(2¢)

(3)
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of the mzgnetopause) approximates a dipole much better some distance
awey than on its surface. This is not true for the field in inter-
planetary space (which is not source-free): in the limit of infinite

.conductivity, all multipole components of the field fall gvay as the
inverse egquare of the distance. It should elsc be noted that the
field contains on undetermined function §C&~; this can only be evalu-
ated when more information ebout the field's scurce is given. Finally,
choosing the solar razdius for Ry and assuming B at the solar surface
is one geuss, one finds at the eerth's distance (approx. 200 Ry) B
2.5%, in egreement with observation (Coleman, Davis and Sonett, 1960).

. At this distance, taking ~_pj_:ro;pr:?.a.ue values for u and w, B is found

to be of the same order as Br. There is thus no disagreement between
the strength of the solar surface field and that of the interplanetary

field near the earth.
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THE CASE OF FINITE CONDUCTIVITY

We now turn to solving the problem for arbitrary 0. We shall

assume 0 is uniform in each reglion and takes the values 0,, 0_ and

12 T2
Oy in regions I, T and III respectively. The following theorem is
found useful: if a vector field B satisfies

o D = O

it may be decomposed uniquely in the following manner

3 = cul wr v curl cul W, ¥ (%)
The theorem has been proved for rotational symmetry by Last and
Schlater [1954] and for the general case by Backus [1958]5 following
Elsasser [1948] the component fields will be termed the toroidal and

poloidal components, respectively. The following identities hold

generally [Smythe, 19501:

curl ¥y = [qrad ¢ x t] (5a)
cael cavl €Y = acad e (€Y) - T IR (5p)
and for rotational symmetry
Y
cuvl Wy = - ity 3 (6a)
2 . } >
cuvl cuvl ¥ = - i .L(/\ VA _v“'av"bﬁ*(*g) (6b)
where
v v ™ Y
l/\\% = s:&- 9 ‘5\’“\9",‘\'

and for any legendre polynomial Pn(cosé)

1
ANPa 2 - o (mei) P
It should be noted that ¥, and YZ are determined wilhin an arbitrary

function of r, and also that (for rotational symmet:y) the toroidal
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component is the ¥ component of the field. If B satisfies
ve = o (7)
Yl and Ya may be specified to be harmonic [Smythe, 1950].
Since B is assumed to stationary, one may write

13 = - %’fo.ck Yo (8)

-

The problem thus reduces to finding the three scalar functions
Yo, ¥, and ¥, by meens of the three scalar equations canstituting

equation (1)

In »egion I

v o= [c:)_x

-

1)
[ S )

and it mey be verified that

oW
[\{' x 2] = - %\’Oo\ (VS“"G'{'Q:>

(9)
Thus, equation (7) holds and we get

T t

VY, = VAR = 0
To obtain an expression for Y,, we insert equations (5b), (8) and (9)

into (1) and get

oxr ,
| : Y T3
Yo ToevEe a‘/‘—b—‘éf h /::Ej v @) + c, (10)

It 1s useful to expand ¥, and ¥ in spherical harmonics. This expan~

sion will have a singularity at the origin due to the dipole field,

which may be derived from a poloidal potential

M AT '
W, Cdigele) = rem @y (11)



Thus, letting § = v/R.

¥ = 2 a7 By (12a)
» o ™ \9"
Y, = 2o a8 () + SR E%% (12b)

In Tegicn IT using (5b) and (62)

’ ]
[sx3] = uisde - wewl r (530 9r) (13)

substituting this and eq. (5a), (5b) and (8) into (1) gives
%va&.%-(‘i?,\") - v*y_\- cuv\.‘fvm‘i.’l =z */Hoq',[s‘fucli‘A- u'ker;—%_+ ucurl ¥ (5—?‘,\2‘*)] (14)
collecting Y components gives
wd v [ Py, - pausZux] = o (15)
which may be integrated to give
I, - MG v (V) = ) (16)
The geheral solution of this is the sum of the solution of the homo-
geneous equation and an arbitrary function of r. Since, however, Yz
is defined within such an arbitrary function, we may set h(r) = O.
In terms bf the dimensionless variable § one then obtains
JY - MGUR F(d) = o (17)
The dimensionless quantity
2d = ﬂaaluﬂo (18)
may be regarded as the magnetic Reynolds number (Elsasser, 1956] of
the system. The limiting case of very high conductivity occurs when
it is much larger than unit&.
Next, eliminate the curl temms from (14) by means of (15) and
take the curl of the result. An equation is obtained which may be
integrated with respect to ¥, yielding an equation for ¥, similar to

(18). For the same reason as before, the arbitrary function of r is
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taken as zero, giving

v, - felu F3eEr) = o (19)
or in dimensionless variables

v, - ¥ % (ur) = o (20)
Finally, in eguetion (14) fr i

from ich the curl terms have been eliminated
substitute vZy  from (19)

The result may be written'

qrad { ) - wvepn v g )

giving'

= o
vn
v, = UY v - Fﬂfst,(&).f) + C, (21)
Let us seek a solution of (17) of the form
Y. = L Gl0) (et
defining Ywid) = 23Mk?)
the following ecuations are obtained
%: - ad iy - n(wu)f‘zka“ = o (22)
The Tirst derivative is eliminated by substituting
o ?
Ym = wale) e
giving
Un = Un (7% wne)/8") = o (23)
The last equation may be integrated analytically ([Murphy, 1960
. 337, eq. 256), giving
ant®) = §T(EE {"“ 0 ¢ ac™)] (24)
Taking (Al, Az) = (1,0), { 0,["] ") we obtain two independent solutions
which lead to two independent solutions for g_, denoted 8.0 and g‘nz
v, o= [ Vi A (8) + Q,M%cs)] P (@ d) (25)
and similarly :
Y =

[Q"“ %""(g) + G %nzf\g).] 'P.,,(m@*) (26)

- amzame



T Feriqn TIT, equetion (1) reduces o

cvw\ “‘Q = j“'qlz E.

giving gv, = v"Q‘ = v‘xzz = 0 (27)

using (5b) gives

%\’Q.c‘\{ ,?\r(t',),r) + Pea, Vv, } = - ©o
or
¢, = - )<<:<T ’?v YY) o+ ¢y (28)
‘ifl and Yz may be expanded in spherical harmonics
g, - Dot (E) R (292)
o, = D &E) mw (29p)
where $, = R./R,

THE POLOIDAL FIELD

On the boundaries, the three components of B and the electric
potential are continuous (the continuity of the normal component of
curl B does not add any new condition here). In this case, where the
boundaries are spherical, the quantities continuous across the two

boundaries agre ~
Y

A% , Ny, 'ae’)&(yl ), Yo

. giving 8 equations for the 8 sets of unknown coefficients previously
defined. Iet B = p.om/)-mRoZ and let dashes dencte derivatives with

respect to . If n # 1, the following relations hold

L. = Qo »%M.(n) A g, 0) : (30)
Mmoot & 30 G) Ry Gael)
@ = Loy G (&) L, Y )
:ws} t. = G 83w 8) + &8 G ($.)
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These equations are hbmogeneous and will in general have only the

trivial solution in which 21l coefficients venish. For n = 1, however

g +« & = T, 9.0) o+ e 0) (31)
%, - af = R O N )

"

Qn = &'H 2“(3') + an_ %I’.‘. (g.)
"QJQJ’:, = ’Q’“ 9\ %:l(y\) -+ Qr\}. 9‘ 3:‘,(‘?\)

From eq. (24)
e'z.oi?

9.0 = FH— (& - ¢) (322)
3\1(3) N :,'—— (ot + ::o’) : (32v)

The solution of (31) is then readily obtained as

b, - 3Psd (33)
Za = - 3PS c
where
a = -8 (24" - 4t +3) o (34)
% = 24 + 3
c = &7 (aa” - d)
‘& = /S
§ = (ack - L)™'
from this

[ SR E (k1) + Ry (lw1) -~ §
o = L e:dgl(o(f.—\) + &y (8,4 1)
It should be noted that so far w , ¢ and ¢; have not entered. The
results cobtained reflect only the stretching of the field's radial

component and have nothing to do with the rotation of region I.
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It is of interest to note the behavior of the sclution if both

o and S are somewhat (an order of magnitude or more) larger than

unity. Then

8 = -1 /pc
b, % -3p &GS, . (35)

L% 3%/
50 in region IT |
v, ¢ [~ uaes w op/as] s (56)

Vel CUho dewwapiions made the first term, contributed by b11’ is
dcminant everywhere except near the outer boundary, where the field
departs from the radial direction and curves to meet the outside dipole

field. By equation (6b)

y By = 3PRecny/v*
By = (3?’R°s'w,\9w/2,‘,p“> c—zoé (s.-%)
in agreement with the limiting solution.: In the limit
L, 2 P/2

from which, in region I -

Y, = Pewne (£ +5) (37)
The poloidal field at f= 1 is thus 3/2 times the field produced

there by the central dipole alone.

THE TOROIDAL FIELD

Defining
—?loéu = /'1‘70—; uRo
20(3 = /4003 u o

Yo = b / URo
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"equations -(10), (21) and (28) become, in dimensionless units of length,

(1) e, = % (8Tepy )il - 5 Fes) v e (38)
(I1) w,, =  wl -3 (¥ + o (39)
(IIT) Yoo = = ZZ,47W3) + ¢ (40)

developing Y, as in (12a), (26) and (29a) we obtain
Cim = G Gu () * G Gwil)) (41la)
aw = G i (2] + Qo G ($1) (41v)
and two more sets of equations derived from the continuity of Yol .
Since
shE9 = (2/3) (R - R)
the set of equations obtained for any n but 2 or 0 is homogeneous
and its only general solution is zero. The n = O term doesn't contri-

bute to B, so we concentrate on the quadrupole term. Using eq. (24) one

finds in region II, for the quadrupole term only

¢, = {(Ff@w-Fad o FF R o) (2a)
0r- 2500 = [ el (p-ap) + an < F il )} Pt (kev)
accordingly, we define

Y = -:(L+P)2 ' (43)

o= -3 (2 -Z)

Yo = oL, (oL 3L+ Y2+ 3/L)

pmooo= -5 &t (1= 2/u3.)

Dy = dy (" + 3aL/8, + a/28 + 3/9})

s = e™( ot - 3L 4 3)

M = oL+ Bl 3

A = & (W% )

Xs = T ("« W+ %F)

L : [ O 22:)(ae-2) - (Ao %ZM)()}'A")] B
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Then the boundary conditions give

dllf = %QI =

9
»
"

frém which

Q=

QA

1]

suppose > 1 8 » 1 . Then the order of magnitudes of the coefficients

is as follows

approximately A

Qg

O

~

taking b, =B/2, 1

2y _-2a(8-
k'gl = [d'3( F)e
Ir cvs is not large, the first term in brackets may be neglected

anywhere in region II except close to its outer boundary. Then

¢, = - (g&«.)/ug) Blend) +
using (6a)
3‘( z - 355 o‘?—:}o . ,!? 6‘»»\\‘)*600\9‘

from which, by (3b), the tangent of the "garden-hose angle" is

‘t% X =

A { Q’Ll + A‘L Qt'l—

>\3 Qu +  Aa

Q.

)5 C‘1§ + Ab C(IZ

A1 Oy, ¥ A8 Qg

da‘f A(At(-

vy

ot § A (Dy= M)

e

"

=4

$)

i / >A-| )1.
8, (e, /ol’)
I/t

A2 M) 225 > 2D 0 A0 F A > x> A

- 18,
e

= . Bw/u, equation (42a) gives

+ 3] iRs) « £

Be /By = - @fsm&/u

(44 )

(45)

(46a)
(46b)
(46¢)

(%7)

(48)

(49)

(50)
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Neé.r the boundary, if §i, @, > 1, the first term of (47) predominates.
Neglecting the second one altogether, equation (6a) gives, on the boundary
By = - (3Posu) s cn (51)
hence, in rggion III
¢, « - P (B o) « 5@ (52)
It is evident that Y, diverges if @, = ®. The reason for this is,
roughly, that if all regions ére ideal conductors, this model will excite
infinite currents by unipolar induction, leading to infinite toroidel fields.
If the problem could be solved more realistically, with the flow velocity
i 88 one of the unknowns, as @, increases without limit the force [J x B]

on the flow also diverges. The flow then would have been greatly modified

near the boundary, and the current density self-limited.

THE ELECTRIC FIELD

The electric field will have both monopole and quadrupole camponents.
We start by evaluating the monopole term ¥, (m) of ¥, . From equations
(40) and (29a), in region III ¥, (m) is constant; its value will be chosen

as zero since this region extends to infinity. In region II, using (24)

§ ¥, (m) = Qonéig ¥  HKoa

from which, by (39)
Yolm) = Qo - + €1 = comtauk
and agaln, this constant must vanish because of continuity with region III.
In region I, from (38)
W, m) = E(a 8. p)S 4
The quadrupole potential Yoa(q) gives a nonzero field in all three

regions; it may be found by inserting the solution for the quadrupole
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component of ¥ into equations (38), (39) and (40). In the limit of

very high conductivity the quadrupole field in II is also given by

E s - [g_‘ x ‘g] 2 - .g\y 35300%. S.\'\«e‘me‘/f
showing that Y, is then independent of r
¥, = - PoRe Tlwp) . (53)

In region III Y, is a h'armonic quadrupole potential. From equa-
. tion (40) one sees that it does not diverge with a's. It is interesting
to note that, in the limiting casé s> E and B both vanish in the equator-
ial pla.ne', 50 that particles released from the éola.r equator may freely
travel all over it (there is an angle of aﬁout 7° between the ecliptic
and the plane of solar rotation). While this plane is an equipotemtial,
its potential does not equal the potential at infinity but is
Y, (d:0) = 3 (P/R;)- @R (54)

The quantity B/Ro‘is of the order of the field intensity at v = R,
and will be taken as one gauss; Y, then has the order of 10® volts.
This result may have some connection to the modulation of cosmic-ray
intensity by the solar activity cycle, which resembles that produced
by an _electric field ([Enhmert R 1960] and papers referred to theré; most
theories of this class have assumed a geocentric electric field).
However, the value of Y, deduced here is too small by at least a factor
of 10-, and it should be borne in mind that when the solar dipole reverses
its direction, as has been observed in 1958 (Babcock, 1959), ¥, is bound

to reverse its sign, too.
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THE INTERSTELLAR FIELD

To the above rotationally symmetric model one may add a homogeneous
"interstellar magnetic field" By, parallel to the symmetry axis. Such a

field 1s represented by a poloidal potential (diverging at infinity) -

‘i‘ = i De r wnd (55)
so that equation (29b)A will be replaced by
¢ ¢ L (E) ) + § BRE wnd (56)

Equations (30) still hold, but the last two of equations (31) have to be

modified to
IRB, + & s L 3ul8) + La 9alf) (57)
iRDe - 2% = 28 gu8) * L 83 (8)

The coefficients are solved as before, and it is found (notation of equa-

tion 34) that b  is modified by a factor

- 20 (2.-1)
o Ry o~ _&2— --lg:- 2%
-ogpe) =0 e

As has been mentioned, B/RO is of the order of the field at v = R.
If a.nd..91 are considerably larger than unity, the added term 1s neg-
ligible unless B, is very much larger than B/Ro, which is hardly the
case for the interstellar field. Thus the poloidal field in II, and
| ‘consequently ,Yl and Yo, are only negligibly affected by Bo. The only
important term which may undergo a large change is b’; » Which in the

limitihg case becomes

[ | 3 /28, - R3/2 (58)
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- Figure Captions

1. Division of space into three concentric regions
2. Lines of force of the magnetic field in the limiting case

3. Equipotentials for the electric field in the limiting case
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